Low-current-induced electrical hysteresis in Nd_{0.7}Ca_{0.3}MnO₃

Daniel Hsu^{1,2,3}, J. G. Lin^{1,2,*} and W. F. Wu³

¹Center for Condensed Matter Science, National Taiwan University, Taipei, 106 ²Center for Nanostorage Research, National Taiwan University, Taipei, 106 ³Institute of Mechanical Engineering, National Taiwan University, Taipei, 106, Taiwan *Corresponding Author: J. G. Lin, 林昭今 (jglin@ntu.edu.tw)

The electrical characteristics of $Nd_{0.7}Ca_{0.3}MnO_3$ were investigated by measuring voltage vs. current (V-I) at various temperatures. The V-I curves of the $Nd_{0.7}Ca_{0.3}MnO_3$ sample change from linear to nonlinear behavior at temperatures below the charge ordering (CO) temperature (T_{CO} ~ 200 K). An unexpected and reproducible electrical hysteresis loop is observed in the linear region below the Curie temperature ($T_C \sim 110$ K); it is associated with the "tearing" of a two-domain structure of weak and strong CO-state. The required current for this hysteresis is of the order of μ A, which is appropriate for the low-current memory devices.

Left: Voltage-current (V-I) characteristic at various temperatures (300, 200, 180, 160 and 140K) at currents scanned from zero to 0.05A.

Right: V-I curves measured at four temperatures 140 (top left), 120 (top right), 100 (bottom left) and 80K (bottom right), in a reduced current regime at low temperatures.