Coalescence inhibition of hydrous RuO₂ crystallites prepared by a hydrothermal method

Kuo-Hsin Chang (張國興) and Chi-Chang Hu (胡啟章)*

Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan *Corresponding authors, E-mail: <u>chmhcc@ccu.edu.tw</u>

Coalescence of particulates accompanied with crystal growth upon annealing at or above 200°C, found for hydrous RuO₂ (RuO₂·nH₂O) prepared by a sol-gel process, is effectively inhibited by the formation of RuO₂·nH₂O nanocrystallites in a hydrothermal process. This thermal stability, attributable to the barrier originated from the lattice energy of crystallites, maintains the high water content, nanocrystalline structure, and porous nature of RuO₂·nH₂O annealed at elevated temperatures from 200 to 400°C. A hydrothermal derived RuO₂-based supercapacitor with high specific capacitance (ca. 200 F g⁻¹ measured at 100 mA cm⁻²) and a cycle-life time longer than 40000 cycles, resulting from thermal stability, is demonstrated.

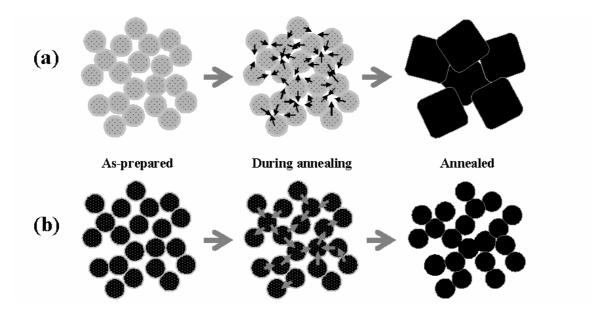


Fig.1 A schematic model of the microstructure variation upon annealing for (a) amorphous and (b) crystalline $RuO_2 \cdot nH_2O$.

~ This paper has been accepted by *Applied Physics Letters* ~ (Scheduled publication date: May 1, 2006)